Merge pull request 'procgen' (#3) from procgen into develop

Reviewed-on: https://git.bellsworne.tech/chrisbell/odin-raylib-game/pulls/3
This commit is contained in:
Chris Bell 2025-03-02 21:33:12 +00:00
commit 4871a4ed3e
9 changed files with 666 additions and 124 deletions

View File

@ -0,0 +1,206 @@
package game
import "core:fmt"
import "core:math/noise"
// Fixed desert finding procedure
find_desert :: proc(seed: i64) -> (found: bool, pos: Vec2i) {
search_radius := 1000
step_size := 20 // Check every 20 blocks to speed up the search
// Track how many desert tiles we find for debugging
desert_count := 0
total_checked := 0
last_desert_pos := Vec2i{0, 0}
fmt.println("Searching for deserts with seed:", seed)
for x := -search_radius; x < search_radius; x += step_size {
for y := -search_radius; y < search_radius; y += step_size {
pos := Vec2i{x, y}
biome := get_biome_type(pos, seed)
total_checked += 1
if biome.type == .DESERT {
desert_count += 1
last_desert_pos = pos
fmt.println("Found desert at:", pos)
if desert_count <= 5 { // Only report the first few to avoid spam
// Verify by checking adjacent tiles to confirm it's not just a single glitched tile
desert_size := 0
check_radius := 3
for cx := -check_radius; cx <= check_radius; cx += 1 {
for cy := -check_radius; cy <= check_radius; cy += 1 {
check_pos := Vec2i{x + cx, y + cy}
check_biome := get_biome_type(check_pos, seed)
if check_biome.type == .DESERT {
desert_size += 1
}
}
}
fmt.println(" Desert size (in 7x7 area):", desert_size, "out of", (check_radius*2+1)*(check_radius*2+1))
}
}
}
}
// Report desert statistics
desert_percentage := f32(desert_count) / f32(total_checked) * 100.0
fmt.println("Desert statistics:")
fmt.println(" Total positions checked:", total_checked)
fmt.println(" Desert tiles found:", desert_count)
fmt.println(" Desert percentage:", desert_percentage, "%")
if desert_count > 0 {
return true, last_desert_pos // Return the last desert found
} else {
fmt.println("No desert found within search radius")
return false, Vec2i{0, 0}
}
}
// Create a biome distribution map to visualize the actual distribution
generate_biome_map :: proc(seed: i64, width: int, height: int) {
biome_counts := [BiomeType]int{}
total_tiles := width * height
fmt.println("Generating biome distribution map", width, "x", height)
// First pass - count biomes
for y := 0; y < height; y += 1 {
for x := 0; x < width; x += 1 {
// Use a different area of the world for better sampling
world_x := (x - width/2) * 20
world_y := (y - height/2) * 20
biome := get_biome_type(Vec2i{world_x, world_y}, seed)
biome_counts[biome.type] += 1
// Print a character representing each biome for a ASCII map
if y % 5 == 0 && x % 5 == 0 { // Print sparse map to fit in console
c := '?'
switch biome.type {
case .DESERT: c = 'D'
case .GRASSLAND: c = 'G'
case .FOREST: c = 'F'
case .LAKE: c = 'L'
}
fmt.print(c)
}
}
if y % 5 == 0 {
fmt.println()
}
}
// Print biome statistics
fmt.println("\nBiome Distribution:")
fmt.println(" Total area:", total_tiles, "tiles")
for biome_type, count in biome_counts {
percentage := f32(count) / f32(total_tiles) * 100.0
fmt.println(" ", biome_type, ":", count, "tiles (", percentage, "%)")
}
}
// Debug the noise distribution directly
debug_noise_values :: proc(seed: i64) {
// Import math package at the top of your file
// import "core:math"
// Collect some sample values to see the actual distribution
samples := 1000
temp_values := make([dynamic]f64, 0, samples)
moisture_values := make([dynamic]f64, 0, samples)
for i := 0; i < samples; i += 1 {
// Sample across a wide area
x := (i % 50) * 100 - 2500
y := (i / 50) * 100 - 2500
// Generate values the same way as in get_biome_type
continent_scale := 0.001
region_scale := 0.005
moisture_seed := seed + 20000
temperature_seed := seed + 30000
// Get raw noise values
moisture := noise.noise_2d(moisture_seed, {f64(x) * region_scale, f64(y) * region_scale})
temperature := noise.noise_2d(temperature_seed, {f64(x) * region_scale, f64(y) * region_scale})
// Apply the same transformations as in your get_biome_type function
// Remove this line if you don't have math imported, or replace with your own pow implementation
// temperature = math.pow(temperature * 0.5 + 0.5, 0.8) * 2.0 - 1.0
// Normalize to 0-1 range
normalized_moisture := f64(moisture * 0.5 + 0.5)
normalized_temperature := f64(temperature * 0.5 + 0.5)
append_elem(&temp_values, normalized_temperature)
append_elem(&moisture_values, normalized_moisture)
}
// Calculate statistics
temp_min, temp_max, temp_avg := 1.0, 0.0, 0.0
moisture_min, moisture_max, moisture_avg := 1.0, 0.0, 0.0
for i := 0; i < samples; i += 1 {
temp := temp_values[i]
moisture := moisture_values[i]
temp_avg += temp
moisture_avg += moisture
temp_min = min(temp_min, temp)
temp_max = max(temp_max, temp)
moisture_min = min(moisture_min, moisture)
moisture_max = max(moisture_max, moisture)
}
temp_avg /= f64(samples)
moisture_avg /= f64(samples)
// Print statistics
fmt.println("Temperature values (normalized to 0-1):")
fmt.println(" Min:", temp_min, "Max:", temp_max, "Avg:", temp_avg)
fmt.println("Moisture values (normalized to 0-1):")
fmt.println(" Min:", moisture_min, "Max:", moisture_max, "Avg:", moisture_avg)
// Count how many points would qualify as deserts with different thresholds
desert_count_strict := 0
desert_count_medium := 0
desert_count_loose := 0
for i := 0; i < samples; i += 1 {
temp := temp_values[i]
moisture := moisture_values[i]
// Strict: temp > 0.55 && moisture < 0.4
if temp > 0.55 && moisture < 0.4 {
desert_count_strict += 1
}
// Medium: temp > 0.4 && moisture < 0.6
if temp > 0.4 && moisture < 0.6 {
desert_count_medium += 1
}
// Loose: temp > 0.3 || moisture < 0.4
if temp > 0.3 || moisture < 0.4 {
desert_count_loose += 1
}
}
fmt.println("\nDesert qualification rates with different thresholds:")
fmt.println(" Strict (temp > 0.55 && moisture < 0.4):",
f32(desert_count_strict)/f32(samples)*100.0, "%")
fmt.println(" Medium (temp > 0.4 && moisture < 0.6):",
f32(desert_count_medium)/f32(samples)*100.0, "%")
fmt.println(" Loose (temp > 0.3 || moisture < 0.4):",
f32(desert_count_loose)/f32(samples)*100.0, "%")
}

BIN
game/game

Binary file not shown.

View File

@ -24,34 +24,28 @@ main :: proc() {
rl.SetTargetFPS(60) rl.SetTargetFPS(60)
player = { player = {
position = {CELL_SIZE * 10, CELL_SIZE * 10}, position = {CELL_SIZE * 0, CELL_SIZE * 0},
camera = { camera = {
zoom = 3, zoom = 4,
target = {player.position.x + (CELL_SIZE / 2), player.position.y + (CELL_SIZE / 2)}, target = {player.position.x + (CELL_SIZE / 2), player.position.y + (CELL_SIZE / 2)},
offset = {f32(rl.GetScreenWidth()) / 2, f32(rl.GetScreenHeight()) / 2}, offset = {f32(rl.GetScreenWidth()) / 2, f32(rl.GetScreenHeight()) / 2},
}, },
mode = .INTERACT, mode = .INTERACT,
speed = 1,
} }
load_tilemap() load_tilemap()
defer unload_tilemap() defer unload_tilemap()
world = create_world("test_world") world = create_world("test_world", 10172020)
set_tile(&world, tree_tile, {400,400})
save_world(&world) save_world(&world)
game_loop() game_loop()
} }
game_loop :: proc() { game_loop :: proc() {
pos_string : string
pos_cstring : cstring
for !rl.WindowShouldClose() { for !rl.WindowShouldClose() {
@ -69,16 +63,23 @@ game_loop :: proc() {
player_grid_pos := get_player_grid_position(&player) player_grid_pos := get_player_grid_position(&player)
player_grid_pos_tile := get_world_tile(&world, vec2_to_vec2i(player_grid_pos)) player_grid_pos_tile := get_world_tile(&world, vec2_to_vec2i(player_grid_pos))
status_string := rl.TextFormat("POS: [%i,%i] : %v | MODE: %v", int(player_grid_pos.x), int(player_grid_pos.y), player_grid_pos_tile.type, player.mode) current_chunk := get_chunk_from_world_pos(&world, player_grid_pos)
status_string := rl.TextFormat("POS: [%i,%i] : %v | Chunk: [%i,%i] : %v | MODE: %v", int(player_grid_pos.x), int(player_grid_pos.y), player_grid_pos_tile.type, current_chunk.position.x, current_chunk.position.y, get_biome_from_id(current_chunk.biome_id).name, player.mode)
pos_string := rl.TextFormat("Actual pos: %v", player.position)
rl.DrawText(status_string, 5, 25, 20, rl.RED) rl.DrawText(status_string, 5, 25, 20, rl.RED)
// Debug: Draw collision check position
target_pos := player_grid_pos
chunk_pos := world_pos_to_chunk_pos(player_grid_pos)
local_pos := get_local_chunk_pos(vec2_to_vec2i(player_grid_pos))
format_string := rl.TextFormat("Grid: (%.0f,%.0f) Chunk: (%d,%d) Local: (%d,%d)",
player_grid_pos.x, player_grid_pos.y,
chunk_pos.x, chunk_pos.y,
local_pos.x, local_pos.y)
rl.DrawText(format_string, 10, 45, 20, rl.YELLOW)
rl.EndDrawing() rl.EndDrawing()
} }
delete(pos_string)
delete(pos_cstring)
} }
update :: proc() { update :: proc() {

View File

@ -1,5 +1,7 @@
package game package game
import "core:math"
Vec2i :: struct { Vec2i :: struct {
x: int, x: int,
y: int, y: int,
@ -10,17 +12,15 @@ vec2i_to_vec2 :: proc(v2i:Vec2i) -> [2]f32 {
} }
vec2_to_vec2i :: proc(v2:[2]f32) -> Vec2i { vec2_to_vec2i :: proc(v2:[2]f32) -> Vec2i {
return {int(v2.x), int(v2.y)} return {int(math.floor(v2.x)), int(math.floor(v2.y))}
} }
to_bytes :: proc(v: $T) -> [size_of(T)]u8 { hash_noise :: proc(x, y: int, seed: i64) -> f32 {
val := v h: i64 = i64(x) * 374761393
encoded_bytes := (^[size_of(T)]u8)(&val) h *= i64(y) * 668265263
return encoded_bytes^ h *= seed
h *= 3266489917
h >>= 16
return f32(h & 0xFFFF) / 65535.0
} }
from_bytes :: proc($T:typeid, data: [size_of(T)]u8) -> T {
bytes := data
decoded_value := (^T)(&bytes)^
return decoded_value
}

View File

@ -2,6 +2,7 @@ package game
import rl "vendor:raylib" import rl "vendor:raylib"
import "core:fmt" import "core:fmt"
import "core:math"
CHUNK_UNLOAD_DISTANCE :: 3 CHUNK_UNLOAD_DISTANCE :: 3
@ -10,6 +11,7 @@ Player :: struct {
move_timer: f32, move_timer: f32,
mode: InteractMode, mode: InteractMode,
camera: rl.Camera2D, camera: rl.Camera2D,
speed:f32
} }
InteractMode :: enum { InteractMode :: enum {
@ -31,55 +33,42 @@ player_update :: proc(p : ^Player, w: ^World) {
handle_player_input(p,w) handle_player_input(p,w)
handle_player_camera(p) handle_player_camera(p)
if rl.IsKeyPressed(.SPACE) { // if rl.IsKeyPressed(.SPACE) {
set_tile(w, tree_tile, vec2_to_vec2i(get_player_grid_position(p))) // // set_tile(w, bricks_tile, vec2_to_vec2i(get_player_grid_position(p)))
} // find_desert(w.seed)
// generate_biome_map(w.seed, 100, 100)
// }
} }
@(private="file") @(private="file")
player_update_chunks :: proc(p: ^Player, w: ^World) { player_update_chunks :: proc(p: ^Player, w: ^World) {
// Configurable view distance (in chunks)
VIEW_DISTANCE :: 2
player_grid_pos := get_player_grid_position(p) player_grid_pos := get_player_grid_position(p)
current_player_chunk := get_chunk_from_world_pos(w, player_grid_pos) current_player_chunk := get_chunk_from_world_pos(w, player_grid_pos)
directions := [8]Vec2i{ // Track which chunks should be loaded
Vec2i{ 1, 0 }, Vec2i{ -1, 0 }, // Right, Left chunks_to_keep := make(map[Vec2i]bool)
Vec2i{ 0, 1 }, Vec2i{ 0, -1 }, // Down, Up defer delete(chunks_to_keep)
Vec2i{ 1, 1 }, Vec2i{ -1, -1 }, // Bottom-right, Top-left
Vec2i{ 1, -1 }, Vec2i{ -1, 1 }, // Top-right, Bottom-left
}
// Always ensure the current chunk is loaded // Load chunks in a square around the player's current chunk
get_chunk(w, current_player_chunk.position) for y := -VIEW_DISTANCE; y <= VIEW_DISTANCE; y += 1 {
for x := -VIEW_DISTANCE; x <= VIEW_DISTANCE; x += 1 {
chunk_pos := Vec2i{
current_player_chunk.position.x + x,
current_player_chunk.position.y + y,
}
// Load adjacent chunks // Load the chunk and mark it to keep
for dir in directions { get_chunk(w, chunk_pos)
adjacent_pos := Vec2i{ chunks_to_keep[chunk_pos] = true
current_player_chunk.position.x + dir.x,
current_player_chunk.position.y + dir.y
} }
get_chunk(w, adjacent_pos)
} }
// Unload non-adjacent chunks // Unload chunks outside the view distance
for chunk_pos in w.chunks { for chunk_pos in w.chunks {
if chunk_pos == current_player_chunk.position { if !chunks_to_keep[chunk_pos] {
continue
}
is_adjacent := false
for dir in directions {
check_pos := Vec2i{
current_player_chunk.position.x + dir.x,
current_player_chunk.position.y + dir.y
}
if chunk_pos == check_pos {
is_adjacent = true
break
}
}
if !is_adjacent {
unload_chunk(chunk_pos, w) unload_chunk(chunk_pos, w)
} }
} }
@ -88,18 +77,29 @@ player_update_chunks :: proc(p: ^Player, w: ^World) {
@(private="file") @(private="file")
handle_player_input :: proc(p:^Player, w:^World) { handle_player_input :: proc(p:^Player, w:^World) {
current_tile := get_world_tile(w, vec2_to_vec2i(get_player_grid_position(p)))
// Movement // Movement
target_pos := get_player_grid_position(p)
dt := rl.GetFrameTime() dt := rl.GetFrameTime()
move_delay : f32 = 0.2 move_delay : f32 = 0.2 / p.speed
if p.move_timer > 0 { if p.move_timer > 0 {
p.move_timer -= dt p.move_timer -= dt
} }
if current_tile.type == .WATER {
p.speed = 0.3
}
else {
p.speed = 1
}
if p.move_timer <= 0 { if p.move_timer <= 0 {
current_pos := get_player_grid_position(p)
if rl.IsKeyDown(.D) { if rl.IsKeyDown(.D) {
target_pos.x += 1 target_pos := rl.Vector2{current_pos.x + 1, current_pos.y}
if !will_collide(w, target_pos) { if !will_collide(.RIGHT, p, w) {
player.position.x += CELL_SIZE player.position.x += CELL_SIZE
p.move_timer = move_delay p.move_timer = move_delay
player_update_chunks(p,w) player_update_chunks(p,w)
@ -107,8 +107,8 @@ handle_player_input :: proc(p:^Player, w:^World) {
} }
if rl.IsKeyDown(.A) { if rl.IsKeyDown(.A) {
target_pos.x -= 1 target_pos := rl.Vector2{current_pos.x - 1, current_pos.y}
if !will_collide(w, target_pos) { if !will_collide(.LEFT, p, w) {
player.position.x -= CELL_SIZE player.position.x -= CELL_SIZE
p.move_timer = move_delay p.move_timer = move_delay
player_update_chunks(p,w) player_update_chunks(p,w)
@ -116,8 +116,8 @@ handle_player_input :: proc(p:^Player, w:^World) {
} }
if rl.IsKeyDown(.W) { if rl.IsKeyDown(.W) {
target_pos.y -= 1 target_pos := rl.Vector2{current_pos.x, current_pos.y - 1}
if !will_collide(w, target_pos) { if !will_collide(.UP, p, w) {
player.position.y -= CELL_SIZE player.position.y -= CELL_SIZE
p.move_timer = move_delay p.move_timer = move_delay
player_update_chunks(p,w) player_update_chunks(p,w)
@ -125,8 +125,8 @@ handle_player_input :: proc(p:^Player, w:^World) {
} }
if rl.IsKeyDown(.S) { if rl.IsKeyDown(.S) {
target_pos.y += 1 target_pos := rl.Vector2{current_pos.x, current_pos.y + 1}
if !will_collide(w, target_pos) { if !will_collide(.DOWN, p, w) {
p.move_timer = move_delay p.move_timer = move_delay
player.position.y += CELL_SIZE player.position.y += CELL_SIZE
player_update_chunks(p,w) player_update_chunks(p,w)
@ -192,29 +192,36 @@ get_tile_in_direction :: proc(direction:InteractDirection, p:^Player, w:^World)
} }
get_player_grid_position :: proc(player:^Player) -> rl.Vector2 { get_player_grid_position :: proc(player:^Player) -> rl.Vector2 {
grid_pos_x := player.position.x / CELL_SIZE grid_pos_x := math.floor(player.position.x / CELL_SIZE)
grid_pos_y := player.position.y / CELL_SIZE grid_pos_y := math.floor(player.position.y / CELL_SIZE)
return {grid_pos_x, grid_pos_y} return {grid_pos_x, grid_pos_y}
} }
draw_player :: proc(player:^Player) { draw_player :: proc(player:^Player) {
draw_tile({27,0}, player.position, rl.DARKBLUE) draw_tile({25,0}, player.position, {30,100,120,255})
// Debug: Draw player's grid cell
// player_grid_pos := get_player_grid_position(player)
// world_pos_x := player_grid_pos.x * CELL_SIZE
// world_pos_y := player_grid_pos.y * CELL_SIZE
// rl.DrawRectangleLines(
// i32(world_pos_x),
// i32(world_pos_y),
// i32(CELL_SIZE),
// i32(CELL_SIZE),
// rl.RED
// )
} }
will_collide :: proc(direction:InteractDirection, p:^Player, w:^World) -> bool {
tile, pos := get_tile_in_direction(direction, p, w)
will_collide :: proc(w:^World, pos:rl.Vector2) -> bool { if tile.type == .SOLID { return true }
world_grid_pos := vec2_to_vec2i(pos)
chunk_pos := world_pos_to_chunk_pos(pos)
local_pos := get_local_chunk_pos(world_grid_pos)
chunk := get_chunk(w, chunk_pos)
tile := get_chunk_tile(chunk, local_pos)
#partial switch tile.type {
case .SOLID:
return true
}
return false return false
} }

14
game/structures.odin Normal file
View File

@ -0,0 +1,14 @@
package game
Structure :: struct {
name:string,
tile_map:[dynamic][dynamic]Tile,
// Other data here later like NPCs and enemies?
}
test_structure := Structure {
name = "Test",
tile_map = {
// Make a structure here?????
}
}

227
game/terrain.odin Normal file
View File

@ -0,0 +1,227 @@
package game
import "core:math/noise"
import "core:math"
import "core:fmt"
BIOME_SCALE : f64 : 1
biome_list := map[u32]Biome {
0 = grasslands_biome,
1 = forest_biome,
2 = desert_biome,
3 = lake_biome,
}
BiomeType :: enum {
GRASSLAND,
FOREST,
LAKE,
DESERT,
}
Biome :: struct {
id:u32,
name: string,
type: BiomeType,
fauna_color: [4]u8,
valid_structures: [dynamic]u32
}
// Define biome constants
grasslands_biome := Biome {
id = 0,
name = "Grasslands",
type = .GRASSLAND,
fauna_color = {50, 120, 25, 255},
valid_structures = {}
}
forest_biome := Biome {
id = 1,
name = "Forest",
type = .FOREST,
fauna_color = {30, 80, 20, 255},
valid_structures = {}
}
desert_biome := Biome {
id = 2,
name = "Desert",
type = .DESERT,
fauna_color = {200, 180, 100, 255},
valid_structures = {}
}
lake_biome := Biome {
id = 3,
name = "Lake",
type = .LAKE,
fauna_color = {0, 50, 150, 255},
valid_structures = {}
}
get_biome_from_id :: proc(id:u32) -> Biome {
return biome_list[id]
}
get_biome_type :: proc(world_pos: Vec2i, seed: i64) -> Biome {
// Use multiple noise scales for different features
continent_scale := 0.0008 // Very large scale features (continents)
region_scale := 0.007 // Medium scale features (regions)
local_scale := 0.025 // Local variations
// Use different seed offsets for each noise layer
continent_seed := seed
region_seed := seed + 10000
moisture_seed := seed + 20000
temperature_seed := seed + 30000
// Generate base continent shapes
continent := noise.noise_2d(continent_seed, {f64(world_pos.x) * continent_scale, f64(world_pos.y) * continent_scale})
// Amplify to get more defined continents
continent = math.pow(continent * 0.5 + 0.5, 1.5) * 2.0 - 1.0
// Generate regional variations
region := noise.noise_2d(region_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
// Generate moisture and temperature maps for biome determination
moisture := noise.noise_2d(moisture_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
temperature := noise.noise_2d(temperature_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
// Adjust temperature to create larger hot regions
// This skews the distribution to have more areas with higher temperature
// temperature = math.pow(temperature * 0.5 + 0.5, 0.8) * 2.0 - 1.0
// Local variations (small details)
local_var := noise.noise_2d(seed, {f64(world_pos.x) * local_scale, f64(world_pos.y) * local_scale}) * 0.1
// Combine all factors with proper weighting
elevation := continent * 0.7 + region * 0.3 + local_var
// Convert noise values to 0-1 range for easier thresholding
normalized_elevation := elevation * 0.5 + 0.5
normalized_moisture := moisture * 0.5 + 0.5
normalized_temperature := temperature * 0.5 + 0.5
if normalized_elevation < 0.3 {
return lake_biome
}
if normalized_temperature > 0.7 && normalized_moisture < 0.2 {
return desert_biome
}
// Forests need moderate to high moisture
if normalized_moisture > 0.55 {
return forest_biome
}
// Default to grasslands
return grasslands_biome
}
// Improved chunk generation that considers neighboring chunks
generate_chunk :: proc(pos: Vec2i, seed: i64) -> Chunk {
chunk := Chunk{position = pos}
// Store the biome for this chunk for consistency
chunk_center := Vec2i{pos.x * CHUNK_SIZE + CHUNK_SIZE/2, pos.y * CHUNK_SIZE + CHUNK_SIZE/2}
biome := get_biome_type(chunk_center, seed)
chunk.biome_id = biome.id
// Generate each tile, allowing for biome blending at edges
for x in 0..<CHUNK_SIZE {
for y in 0..<CHUNK_SIZE {
world_x := pos.x * CHUNK_SIZE + x
world_y := pos.y * CHUNK_SIZE + y
world_pos := Vec2i{world_x, world_y}
// Check the tile's specific biome (for transitions)
tile_biome := get_biome_type(world_pos, seed)
// Calculate distances to chunk edges for potential blending
edge_dist_x := min(x, CHUNK_SIZE - 1 - x)
edge_dist_y := min(y, CHUNK_SIZE - 1 - y)
edge_dist := min(edge_dist_x, edge_dist_y)
// Blend between chunk biome and tile biome near edges
// for smoother transitions between chunks
biome_to_use := biome
if edge_dist < 4 { // Within 4 tiles of chunk edge
blend_factor := f32(edge_dist) / 4.0
// Simple way to blend biomes - just pick one based on blend factor
// For a more sophisticated approach, you could actually blend features
if hash_noise(world_x, world_y, seed) > blend_factor {
biome_to_use = tile_biome
}
}
chunk.tiles[x][y] = generate_tile(world_pos, seed, biome_to_use)
}
}
return chunk
}
// Improved tile generation with biome transition support
generate_tile :: proc(pos: Vec2i, seed: i64, biome: Biome) -> Tile {
hash_value := hash_noise(pos.x, pos.y, seed)
// Use multiple noise scales for natural-looking features
large_scale := 0.025
medium_scale := 0.07
small_scale := 0.20
large_noise := noise.noise_2d(seed, {f64(pos.x) * large_scale, f64(pos.y) * large_scale})
medium_noise := noise.noise_2d(seed + 5000, {f64(pos.x) * medium_scale, f64(pos.y) * medium_scale})
small_noise := noise.noise_2d(seed + 10000, {f64(pos.x) * small_scale, f64(pos.y) * small_scale})
// Combine noise at different scales
combined_noise := large_noise * 0.6 + medium_noise * 0.3 + small_noise * 0.1
// Different biomes use the noise differently
switch biome.type {
case .GRASSLAND:
if combined_noise > 0.8 {
return tree_tile
} else if combined_noise > 0.2 {
return grass_tile
} else {
return nothing_tile
}
case .FOREST:
if combined_noise > 0.75 {
return double_tree_tile
} else if combined_noise > 0.4 {
return tree_tile
} else if combined_noise > 0.0 {
return grass_tile
} else {
return nothing_tile
}
case .DESERT:
cactus_noise := medium_noise * 0.5 + 0.5 // Normalize to 0-1
if cactus_noise > 0.8 && hash_value > 0.65 {
return cactus_tile
} else if combined_noise > 0.85 {
return dead_bush_tile
} else {
return nothing_tile
}
case .LAKE:
// Lakes can have different depths
if combined_noise > 0.7 {
return shallow_water_tile // You'd need to define this
} else {
return water_tile
}
case:
return nothing_tile
}
}

View File

@ -15,11 +15,13 @@ TileType :: enum u8 {
NOTHING, NOTHING,
SOLID, SOLID,
FOLIAGE, FOLIAGE,
WATER,
} }
ResourceType :: enum u8 { ResourceType :: enum u8 {
NOTHING, NOTHING,
TREE, TREE,
BONE,
} }
InteractionType :: enum u8 { InteractionType :: enum u8 {
@ -28,18 +30,92 @@ InteractionType :: enum u8 {
ENEMY, ENEMY,
} }
nothing_tile := Tile {
type = .FOLIAGE, // Premade Tiles
tilemap_pos = {1,2}, nothing_tile := Tile { // The most common tile, makes up the majority of the world.
color = {30,30,0,255}, type = .NOTHING,
tilemap_pos = {0,0},
color = {0,0,0,255},
interaction = .NOTHING, interaction = .NOTHING,
resource = .NOTHING resource = .NOTHING
} }
tree_tile := Tile { grass_tile := Tile { // Common fauna, more dense in grasslands
type = .FOLIAGE,
tilemap_pos = {5,0},
color = {50,120,25,255},
interaction = .NOTHING,
resource = .NOTHING
}
tree_tile := Tile { // Common grassland fauna, dense population in forests
type = .SOLID, type = .SOLID,
tilemap_pos = {0,1}, tilemap_pos = {0,1},
color = {17,87,30,255}, color = {10,60,15,255},
resource = .TREE, resource = .TREE,
interaction = .RESOURCE, interaction = .RESOURCE,
} }
double_tree_tile := Tile { // Only found in forests, densly packed
type = .SOLID,
tilemap_pos = {3,2},
color = {10,60,15,255},
resource = .TREE,
interaction = .RESOURCE,
}
bricks_tile := Tile { // Unused, for now
type = .SOLID,
tilemap_pos = {10,17},
color = {140,30,10,255},
resource = .NOTHING,
interaction = .NOTHING,
}
water_tile := Tile { // Only seen in bodies of water
type = .WATER,
tilemap_pos = {19,1},
color = {5,10,70,255},
resource = .NOTHING,
interaction = .NOTHING,
}
shallow_water_tile := Tile { // Only seen in bodies of water
type = .WATER,
tilemap_pos = {19,1},
color = {5,40,80,255},
resource = .NOTHING,
interaction = .NOTHING,
}
cactus_tile := Tile { // Common desert fauna
type = .SOLID,
tilemap_pos = {6,1},
color = {5,40,0,255},
resource = .NOTHING,
interaction = .NOTHING,
}
double_cactus_tile := Tile { // Sparse desert fauna
type = .SOLID,
tilemap_pos = {7,1},
color = {5,40,0,255},
resource = .NOTHING,
interaction = .NOTHING,
}
cow_skull_tile := Tile { // Rare chance of spawning in a desert
type = .SOLID,
tilemap_pos = {1,15},
color = {200,200,200,255},
resource = .BONE,
interaction = .RESOURCE,
}
dead_bush_tile := Tile { // Common desert fauna
type = .FOLIAGE,
tilemap_pos = {6,2},
color = {145,100,30,255},
interaction = .NOTHING,
resource = .NOTHING
}

View File

@ -5,6 +5,7 @@ import "core:fmt"
import "core:os" import "core:os"
import "core:path/filepath" import "core:path/filepath"
import "core:mem" import "core:mem"
import "core:math"
CELL_SIZE :: 16 CELL_SIZE :: 16
CHUNK_SIZE :: 32 CHUNK_SIZE :: 32
@ -12,15 +13,17 @@ WORLD_DATA_PATH :: "data/worlds"
World :: struct { World :: struct {
data_dir: string, data_dir: string,
chunks: map[Vec2i]Chunk chunks: map[Vec2i]Chunk,
seed: i64
} }
Chunk :: struct #packed { Chunk :: struct #packed {
position: Vec2i, position: Vec2i,
tiles: [CHUNK_SIZE][CHUNK_SIZE]Tile, tiles: [CHUNK_SIZE][CHUNK_SIZE]Tile,
biome_id:u32,
} }
create_world :: proc(name:string) -> World { create_world :: proc(name:string, seed:i64) -> World {
data_dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name) data_dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name)
if !os.is_dir(data_dir) { if !os.is_dir(data_dir) {
fmt.printfln("Data dir: %v does not exist", data_dir) fmt.printfln("Data dir: %v does not exist", data_dir)
@ -35,10 +38,11 @@ create_world :: proc(name:string) -> World {
return World { return World {
data_dir = data_dir, data_dir = data_dir,
chunks = make(map[Vec2i]Chunk), chunks = make(map[Vec2i]Chunk),
seed = seed
} }
} }
load_world :: proc(name:string) -> World { load_world :: proc(name:string, seed:i64) -> World {
dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name) dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name)
if !os.is_dir(dir) { if !os.is_dir(dir) {
panic("Couldnt load world") panic("Couldnt load world")
@ -47,6 +51,7 @@ load_world :: proc(name:string) -> World {
return World { return World {
data_dir = dir, data_dir = dir,
chunks = make(map[Vec2i]Chunk), chunks = make(map[Vec2i]Chunk),
seed = seed
} }
} }
@ -86,6 +91,9 @@ save_chunk :: proc(c:^Chunk, w:^World) {
} }
} }
// Biome ID
for byte in transmute([size_of(u32)]u8)c.biome_id {append(&data, byte)}
err := os.write_entire_file_or_err(filename, data[:]) err := os.write_entire_file_or_err(filename, data[:])
} }
@ -97,7 +105,7 @@ load_chunk :: proc(pos:Vec2i, w:^World) -> Chunk {
data, err := os.read_entire_file_from_filename_or_err(filename) data, err := os.read_entire_file_from_filename_or_err(filename)
if err != nil { if err != nil {
// fmt.printfln("No chunk %v found, generating new chunk", pos) // fmt.printfln("No chunk %v found, generating new chunk", pos)
chunk := generate_chunk(pos) chunk := generate_chunk(pos, w.seed)
save_chunk(&chunk, w) save_chunk(&chunk, w)
return chunk return chunk
} }
@ -135,6 +143,10 @@ load_chunk :: proc(pos:Vec2i, w:^World) -> Chunk {
} }
} }
// Load Biome ID
mem.copy(transmute([^]u8)&chunk.biome_id, &data[offset], size_of(u32))
offset += size_of(u32)
return chunk return chunk
} }
@ -147,20 +159,6 @@ unload_chunk :: proc(pos:Vec2i, w:^World) {
} }
} }
generate_chunk :: proc(pos:Vec2i) -> Chunk {
chunk := Chunk {position = pos}
for x in 0..<CHUNK_SIZE {
for y in 0..<CHUNK_SIZE {
chunk.tiles[x][y] = nothing_tile
}
}
center_pos := Vec2i{CHUNK_SIZE/2, CHUNK_SIZE/2}
set_chunk_tile(&chunk, tree_tile, center_pos)
return chunk
}
get_chunk :: proc(w:^World, chunk_pos:Vec2i) -> ^Chunk { get_chunk :: proc(w:^World, chunk_pos:Vec2i) -> ^Chunk {
chunk, exists := w.chunks[chunk_pos] chunk, exists := w.chunks[chunk_pos]
@ -176,24 +174,37 @@ get_chunk_from_world_pos :: proc(w:^World, pos:rl.Vector2) -> ^Chunk {
} }
world_pos_to_chunk_pos :: proc(pos:rl.Vector2) -> Vec2i { world_pos_to_chunk_pos :: proc(pos:rl.Vector2) -> Vec2i {
chunk_pos := vec2_to_vec2i({pos.x / CHUNK_SIZE, pos.y / CHUNK_SIZE})
return chunk_pos x := int(math.floor(pos.x / CHUNK_SIZE))
y := int(math.floor(pos.y / CHUNK_SIZE))
return Vec2i{x,y}
} }
get_local_chunk_pos :: proc(pos:Vec2i) -> Vec2i { get_local_chunk_pos :: proc(pos:Vec2i) -> Vec2i {
return Vec2i { x := (pos.x % CHUNK_SIZE + CHUNK_SIZE) % CHUNK_SIZE
(pos.x % CHUNK_SIZE + CHUNK_SIZE) % CHUNK_SIZE, y := (pos.y % CHUNK_SIZE + CHUNK_SIZE) % CHUNK_SIZE
(pos.y % CHUNK_SIZE + CHUNK_SIZE) % CHUNK_SIZE,
} return Vec2i{x,y}
} }
get_world_tile :: proc(w:^World, pos:Vec2i) -> ^Tile { get_world_tile :: proc(w:^World, pos:Vec2i) -> ^Tile {
chunk_pos := world_pos_to_chunk_pos(vec2i_to_vec2(pos)) chunk_x := int(math.floor(f32(pos.x) / f32(CHUNK_SIZE)))
local_pos := get_local_chunk_pos(pos) chunk_y := int(math.floor(f32(pos.y) / f32(CHUNK_SIZE)))
chunk_pos := Vec2i{chunk_x, chunk_y}
local_x := (pos.x % CHUNK_SIZE + CHUNK_SIZE) % CHUNK_SIZE
local_y := (pos.y % CHUNK_SIZE + CHUNK_SIZE) % CHUNK_SIZE
local_pos := Vec2i{local_x, local_y}
chunk := get_chunk(w, chunk_pos) chunk := get_chunk(w, chunk_pos)
return get_chunk_tile(chunk, local_pos) return get_chunk_tile(chunk, local_pos)
// chunk_pos := world_pos_to_chunk_pos(vec2i_to_vec2(pos))
// local_pos := get_local_chunk_pos(pos)
//
// chunk := get_chunk(w, chunk_pos)
// return get_chunk_tile(chunk, local_pos)
} }
get_chunk_tile :: proc(c:^Chunk, pos:Vec2i) -> ^Tile { get_chunk_tile :: proc(c:^Chunk, pos:Vec2i) -> ^Tile {