I may have used ai for some of the proc gen..

This commit is contained in:
Chris Bell 2025-03-01 22:52:34 -06:00
parent 8c0601c7aa
commit 2be653504a
9 changed files with 599 additions and 62 deletions

View File

@ -0,0 +1,206 @@
package game
import "core:fmt"
import "core:math/noise"
// Fixed desert finding procedure
find_desert :: proc(seed: i64) -> (found: bool, pos: Vec2i) {
search_radius := 1000
step_size := 20 // Check every 20 blocks to speed up the search
// Track how many desert tiles we find for debugging
desert_count := 0
total_checked := 0
last_desert_pos := Vec2i{0, 0}
fmt.println("Searching for deserts with seed:", seed)
for x := -search_radius; x < search_radius; x += step_size {
for y := -search_radius; y < search_radius; y += step_size {
pos := Vec2i{x, y}
biome := get_biome_type(pos, seed)
total_checked += 1
if biome.type == .DESERT {
desert_count += 1
last_desert_pos = pos
fmt.println("Found desert at:", pos)
if desert_count <= 5 { // Only report the first few to avoid spam
// Verify by checking adjacent tiles to confirm it's not just a single glitched tile
desert_size := 0
check_radius := 3
for cx := -check_radius; cx <= check_radius; cx += 1 {
for cy := -check_radius; cy <= check_radius; cy += 1 {
check_pos := Vec2i{x + cx, y + cy}
check_biome := get_biome_type(check_pos, seed)
if check_biome.type == .DESERT {
desert_size += 1
}
}
}
fmt.println(" Desert size (in 7x7 area):", desert_size, "out of", (check_radius*2+1)*(check_radius*2+1))
}
}
}
}
// Report desert statistics
desert_percentage := f32(desert_count) / f32(total_checked) * 100.0
fmt.println("Desert statistics:")
fmt.println(" Total positions checked:", total_checked)
fmt.println(" Desert tiles found:", desert_count)
fmt.println(" Desert percentage:", desert_percentage, "%")
if desert_count > 0 {
return true, last_desert_pos // Return the last desert found
} else {
fmt.println("No desert found within search radius")
return false, Vec2i{0, 0}
}
}
// Create a biome distribution map to visualize the actual distribution
generate_biome_map :: proc(seed: i64, width: int, height: int) {
biome_counts := [BiomeType]int{}
total_tiles := width * height
fmt.println("Generating biome distribution map", width, "x", height)
// First pass - count biomes
for y := 0; y < height; y += 1 {
for x := 0; x < width; x += 1 {
// Use a different area of the world for better sampling
world_x := (x - width/2) * 20
world_y := (y - height/2) * 20
biome := get_biome_type(Vec2i{world_x, world_y}, seed)
biome_counts[biome.type] += 1
// Print a character representing each biome for a ASCII map
if y % 5 == 0 && x % 5 == 0 { // Print sparse map to fit in console
c := '?'
switch biome.type {
case .DESERT: c = 'D'
case .GRASSLAND: c = 'G'
case .FOREST: c = 'F'
case .LAKE: c = 'L'
}
fmt.print(c)
}
}
if y % 5 == 0 {
fmt.println()
}
}
// Print biome statistics
fmt.println("\nBiome Distribution:")
fmt.println(" Total area:", total_tiles, "tiles")
for biome_type, count in biome_counts {
percentage := f32(count) / f32(total_tiles) * 100.0
fmt.println(" ", biome_type, ":", count, "tiles (", percentage, "%)")
}
}
// Debug the noise distribution directly
debug_noise_values :: proc(seed: i64) {
// Import math package at the top of your file
// import "core:math"
// Collect some sample values to see the actual distribution
samples := 1000
temp_values := make([dynamic]f64, 0, samples)
moisture_values := make([dynamic]f64, 0, samples)
for i := 0; i < samples; i += 1 {
// Sample across a wide area
x := (i % 50) * 100 - 2500
y := (i / 50) * 100 - 2500
// Generate values the same way as in get_biome_type
continent_scale := 0.001
region_scale := 0.005
moisture_seed := seed + 20000
temperature_seed := seed + 30000
// Get raw noise values
moisture := noise.noise_2d(moisture_seed, {f64(x) * region_scale, f64(y) * region_scale})
temperature := noise.noise_2d(temperature_seed, {f64(x) * region_scale, f64(y) * region_scale})
// Apply the same transformations as in your get_biome_type function
// Remove this line if you don't have math imported, or replace with your own pow implementation
// temperature = math.pow(temperature * 0.5 + 0.5, 0.8) * 2.0 - 1.0
// Normalize to 0-1 range
normalized_moisture := f64(moisture * 0.5 + 0.5)
normalized_temperature := f64(temperature * 0.5 + 0.5)
append_elem(&temp_values, normalized_temperature)
append_elem(&moisture_values, normalized_moisture)
}
// Calculate statistics
temp_min, temp_max, temp_avg := 1.0, 0.0, 0.0
moisture_min, moisture_max, moisture_avg := 1.0, 0.0, 0.0
for i := 0; i < samples; i += 1 {
temp := temp_values[i]
moisture := moisture_values[i]
temp_avg += temp
moisture_avg += moisture
temp_min = min(temp_min, temp)
temp_max = max(temp_max, temp)
moisture_min = min(moisture_min, moisture)
moisture_max = max(moisture_max, moisture)
}
temp_avg /= f64(samples)
moisture_avg /= f64(samples)
// Print statistics
fmt.println("Temperature values (normalized to 0-1):")
fmt.println(" Min:", temp_min, "Max:", temp_max, "Avg:", temp_avg)
fmt.println("Moisture values (normalized to 0-1):")
fmt.println(" Min:", moisture_min, "Max:", moisture_max, "Avg:", moisture_avg)
// Count how many points would qualify as deserts with different thresholds
desert_count_strict := 0
desert_count_medium := 0
desert_count_loose := 0
for i := 0; i < samples; i += 1 {
temp := temp_values[i]
moisture := moisture_values[i]
// Strict: temp > 0.55 && moisture < 0.4
if temp > 0.55 && moisture < 0.4 {
desert_count_strict += 1
}
// Medium: temp > 0.4 && moisture < 0.6
if temp > 0.4 && moisture < 0.6 {
desert_count_medium += 1
}
// Loose: temp > 0.3 || moisture < 0.4
if temp > 0.3 || moisture < 0.4 {
desert_count_loose += 1
}
}
fmt.println("\nDesert qualification rates with different thresholds:")
fmt.println(" Strict (temp > 0.55 && moisture < 0.4):",
f32(desert_count_strict)/f32(samples)*100.0, "%")
fmt.println(" Medium (temp > 0.4 && moisture < 0.6):",
f32(desert_count_medium)/f32(samples)*100.0, "%")
fmt.println(" Loose (temp > 0.3 || moisture < 0.4):",
f32(desert_count_loose)/f32(samples)*100.0, "%")
}

BIN
game/game

Binary file not shown.

View File

@ -24,9 +24,8 @@ main :: proc() {
rl.SetTargetFPS(60)
player = {
position = {CELL_SIZE * 10000, CELL_SIZE * 10000},
position = {CELL_SIZE * 10, CELL_SIZE * 10},
camera = {
zoom = 4,
target = {player.position.x + (CELL_SIZE / 2), player.position.y + (CELL_SIZE / 2)},
@ -38,13 +37,9 @@ main :: proc() {
load_tilemap()
defer unload_tilemap()
world = create_world("test_world", 5761)
set_tile(&world, tree_tile, {400,400})
world = create_world("test_world", 23462547245)
save_world(&world)
game_loop()
}
@ -58,7 +53,7 @@ game_loop :: proc() {
update()
rl.BeginDrawing()
rl.ClearBackground({10,80,10,255})
rl.ClearBackground(rl.BLACK)
rl.BeginMode2D(player.camera)
draw()
@ -69,11 +64,10 @@ game_loop :: proc() {
player_grid_pos := get_player_grid_position(&player)
player_grid_pos_tile := get_world_tile(&world, vec2_to_vec2i(player_grid_pos))
status_string := rl.TextFormat("POS: [%i,%i] : %v | MODE: %v", int(player_grid_pos.x), int(player_grid_pos.y), player_grid_pos_tile.type, player.mode)
current_chunk := get_chunk_from_world_pos(&world, player_grid_pos)
status_string := rl.TextFormat("POS: [%i,%i] : %v | Chunk: %v : %v | MODE: %v", int(player_grid_pos.x), int(player_grid_pos.y), player_grid_pos_tile.type, current_chunk.position, get_biome_from_id(current_chunk.biome_id).name, player.mode)
rl.DrawText(status_string, 5, 25, 20, rl.RED)
rl.EndDrawing()
}

View File

@ -15,9 +15,9 @@ vec2_to_vec2i :: proc(v2:[2]f32) -> Vec2i {
return {int(v2.x), int(v2.y)}
}
hash_noise :: proc(x, y: int, seed: u32) -> f32 {
h: u32 = u32(x) * 374761393
h *= u32(y) * 668265263
hash_noise :: proc(x, y: int, seed: i64) -> f32 {
h: i64 = i64(x) * 374761393
h *= i64(y) * 668265263
h *= seed
h *= 3266489917
h >>= 16

View File

@ -32,7 +32,9 @@ player_update :: proc(p : ^Player, w: ^World) {
handle_player_camera(p)
if rl.IsKeyPressed(.SPACE) {
set_tile(w, bricks_tile, vec2_to_vec2i(get_player_grid_position(p)))
// set_tile(w, bricks_tile, vec2_to_vec2i(get_player_grid_position(p)))
find_desert(w.seed)
generate_biome_map(w.seed, 100, 100)
}
}
@ -91,7 +93,7 @@ handle_player_input :: proc(p:^Player, w:^World) {
// Movement
target_pos := get_player_grid_position(p)
dt := rl.GetFrameTime()
move_delay : f32 = 0.2
move_delay : f32 = 0.0
if p.move_timer > 0 {
p.move_timer -= dt
}
@ -199,7 +201,7 @@ get_player_grid_position :: proc(player:^Player) -> rl.Vector2 {
}
draw_player :: proc(player:^Player) {
draw_tile({25,0}, player.position, {50,0,80,255})
draw_tile({25,0}, player.position, {30,100,120,255})
}
@ -213,7 +215,7 @@ will_collide :: proc(w:^World, pos:rl.Vector2) -> bool {
#partial switch tile.type {
case .SOLID:
return true
return false
}
return false

14
game/structures.odin Normal file
View File

@ -0,0 +1,14 @@
package game
Structure :: struct {
name:string,
tile_map:[dynamic][dynamic]Tile,
// Other data here later like NPCs and enemies?
}
test_structure := Structure {
name = "Test",
tile_map = {
// Make a structure here?????
}
}

298
game/terrain.odin Normal file
View File

@ -0,0 +1,298 @@
package game
import "core:math/noise"
import "core:math"
import "core:fmt"
BIOME_SCALE : f64 : 1
biome_list := map[u32]Biome {
0 = grasslands_biome,
1 = forest_biome,
2 = desert_biome,
3 = lake_biome,
}
BiomeType :: enum {
GRASSLAND,
FOREST,
LAKE,
DESERT,
}
Biome :: struct {
id:u32,
name: string,
type: BiomeType,
fauna_color: [4]u8,
valid_structures: [dynamic]u32
}
// Define biome constants
grasslands_biome := Biome {
id = 0,
name = "Grasslands",
type = .GRASSLAND,
fauna_color = {50, 120, 25, 255},
valid_structures = {}
}
forest_biome := Biome {
id = 1,
name = "Forest",
type = .FOREST,
fauna_color = {30, 80, 20, 255},
valid_structures = {}
}
desert_biome := Biome {
id = 2,
name = "Desert",
type = .DESERT,
fauna_color = {200, 180, 100, 255},
valid_structures = {}
}
lake_biome := Biome {
id = 3,
name = "Lake",
type = .LAKE,
fauna_color = {0, 50, 150, 255},
valid_structures = {}
}
get_biome_from_id :: proc(id:u32) -> Biome {
return biome_list[id]
}
// // Improved biome selection with multiple noise layers and better scaling
// get_biome_type :: proc(world_pos: Vec2i, seed: i64) -> Biome {
// // Use multiple noise scales for different features
// continent_scale := 0.001 // Very large scale features (continents)
// region_scale := 0.005 // Medium scale features (regions)
// local_scale := 0.02 // Local variations
//
// // Use different seed offsets for each noise layer
// continent_seed := seed
// region_seed := seed + 10000
// moisture_seed := seed + 20000
// temperature_seed := seed + 30000
//
// // Generate base continent shapes
// continent := noise.noise_2d(continent_seed, {f64(world_pos.x) * continent_scale, f64(world_pos.y) * continent_scale})
// // Amplify to get more defined continents
// continent = math.pow(continent * 0.5 + 0.5, 1.5) * 2.0 - 1.0
//
// // Generate regional variations
// region := noise.noise_2d(region_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
//
// // Generate moisture and temperature maps for biome determination
// moisture := noise.noise_2d(moisture_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
// temperature := noise.noise_2d(temperature_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
//
// // Local variations (small details)
// local_var := noise.noise_2d(seed, {f64(world_pos.x) * local_scale, f64(world_pos.y) * local_scale}) * 0.1
//
// // Combine all factors with proper weighting
// elevation := continent * 0.7 + region * 0.3 + local_var
//
// // Use temperature and moisture to determine biome type instead of just elevation
// // This creates more natural and varied biome transitions
//
// // Convert noise values to 0-1 range for easier thresholding
// normalized_elevation := elevation * 0.5 + 0.5
// normalized_moisture := moisture * 0.5 + 0.5
// normalized_temperature := temperature * 0.5 + 0.5
//
// // Lakes appear in low elevation areas
// if normalized_elevation < 0.3 {
// return lake_biome
// }
//
// // Deserts appear in hot, dry areas
// if normalized_temperature > 0.6 && normalized_moisture < 0.3 {
// return desert_biome
// }
//
// // Forests need moderate to high moisture
// if normalized_moisture > 0.5 {
// return forest_biome
// }
//
// // Default to grasslands
// return grasslands_biome
// }
get_biome_type :: proc(world_pos: Vec2i, seed: i64) -> Biome {
// Use multiple noise scales for different features
continent_scale := 0.001 // Very large scale features (continents)
region_scale := 0.005 // Medium scale features (regions)
local_scale := 0.02 // Local variations
// Use different seed offsets for each noise layer
continent_seed := seed
region_seed := seed + 10000
moisture_seed := seed + 20000
temperature_seed := seed + 30000
// Generate base continent shapes
continent := noise.noise_2d(continent_seed, {f64(world_pos.x) * continent_scale, f64(world_pos.y) * continent_scale})
// Amplify to get more defined continents
continent = math.pow(continent * 0.5 + 0.5, 1.5) * 2.0 - 1.0
// Generate regional variations
region := noise.noise_2d(region_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
// Generate moisture and temperature maps for biome determination
moisture := noise.noise_2d(moisture_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
temperature := noise.noise_2d(temperature_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
// Adjust temperature to create larger hot regions
// This skews the distribution to have more areas with higher temperature
temperature = math.pow(temperature * 0.5 + 0.5, 0.8) * 2.0 - 1.0
// Local variations (small details)
local_var := noise.noise_2d(seed, {f64(world_pos.x) * local_scale, f64(world_pos.y) * local_scale}) * 0.1
// Combine all factors with proper weighting
elevation := continent * 0.7 + region * 0.3 + local_var
// Convert noise values to 0-1 range for easier thresholding
normalized_elevation := elevation * 0.5 + 0.5
normalized_moisture := moisture * 0.5 + 0.5
normalized_temperature := temperature * 0.5 + 0.5
// DEBUG: Uncomment to log values when testing
// fmt.println("pos:", world_pos, "temp:", normalized_temperature, "moisture:", normalized_moisture)
// Lakes appear in low elevation areas
if normalized_elevation < 0.3 {
return lake_biome
}
// ADJUSTED: More generous desert conditions
// Deserts appear in hot OR dry areas (not requiring both)
// This makes deserts more common and creates larger desert regions
if normalized_temperature > 0.55 && normalized_moisture < 0.4 {
return desert_biome
}
// You could also try this alternative approach that uses temperature-moisture balance:
// desert_score := normalized_temperature - normalized_moisture
// if desert_score > 0.3 {
// return desert_biome
// }
// Forests need moderate to high moisture
if normalized_moisture > 0.5 {
return forest_biome
}
// Default to grasslands
return grasslands_biome
}
// Improved chunk generation that considers neighboring chunks
generate_chunk :: proc(pos: Vec2i, seed: i64) -> Chunk {
chunk := Chunk{position = pos}
// Store the biome for this chunk for consistency
chunk_center := Vec2i{pos.x * CHUNK_SIZE + CHUNK_SIZE/2, pos.y * CHUNK_SIZE + CHUNK_SIZE/2}
biome := get_biome_type(chunk_center, seed)
chunk.biome_id = biome.id
// Generate each tile, allowing for biome blending at edges
for x in 0..<CHUNK_SIZE {
for y in 0..<CHUNK_SIZE {
world_x := pos.x * CHUNK_SIZE + x
world_y := pos.y * CHUNK_SIZE + y
world_pos := Vec2i{world_x, world_y}
// Check the tile's specific biome (for transitions)
tile_biome := get_biome_type(world_pos, seed)
// Calculate distances to chunk edges for potential blending
edge_dist_x := min(x, CHUNK_SIZE - 1 - x)
edge_dist_y := min(y, CHUNK_SIZE - 1 - y)
edge_dist := min(edge_dist_x, edge_dist_y)
// Blend between chunk biome and tile biome near edges
// for smoother transitions between chunks
biome_to_use := biome
if edge_dist < 4 { // Within 4 tiles of chunk edge
blend_factor := f32(edge_dist) / 4.0
// Simple way to blend biomes - just pick one based on blend factor
// For a more sophisticated approach, you could actually blend features
if hash_noise(world_x, world_y, seed) > blend_factor {
biome_to_use = tile_biome
}
}
chunk.tiles[x][y] = generate_tile(world_pos, seed, biome_to_use)
}
}
return chunk
}
// Improved tile generation with biome transition support
generate_tile :: proc(pos: Vec2i, seed: i64, biome: Biome) -> Tile {
hash_value := hash_noise(pos.x, pos.y, seed)
// Use multiple noise scales for natural-looking features
large_scale := 0.02
medium_scale := 0.05
small_scale := 0.15
large_noise := noise.noise_2d(seed, {f64(pos.x) * large_scale, f64(pos.y) * large_scale})
medium_noise := noise.noise_2d(seed + 5000, {f64(pos.x) * medium_scale, f64(pos.y) * medium_scale})
small_noise := noise.noise_2d(seed + 10000, {f64(pos.x) * small_scale, f64(pos.y) * small_scale})
// Combine noise at different scales
combined_noise := large_noise * 0.6 + medium_noise * 0.3 + small_noise * 0.1
// Different biomes use the noise differently
switch biome.type {
case .GRASSLAND:
if combined_noise > 0.7 {
return tree_tile
} else if combined_noise > 0.5 {
return grass_tile
} else {
return nothing_tile
}
case .FOREST:
if combined_noise > 0.8 {
return double_tree_tile
} else if combined_noise > 0.4 {
return tree_tile
} else if combined_noise > 0.0 {
return grass_tile
} else {
return nothing_tile
}
case .DESERT:
cactus_noise := medium_noise * 0.5 + 0.5 // Normalize to 0-1
if cactus_noise > 0.7 && hash_value > 0.6 {
return cactus_tile
} else if combined_noise > 0.85 {
return dead_bush_tile
} else {
return nothing_tile
}
case .LAKE:
// Lakes can have different depths
if combined_noise > 0.7 {
return shallow_water_tile // You'd need to define this
} else {
return water_tile
}
case:
return nothing_tile
}
}

View File

@ -21,6 +21,7 @@ TileType :: enum u8 {
ResourceType :: enum u8 {
NOTHING,
TREE,
BONE,
}
InteractionType :: enum u8 {
@ -29,7 +30,9 @@ InteractionType :: enum u8 {
ENEMY,
}
nothing_tile := Tile {
// Premade Tiles
nothing_tile := Tile { // The most common tile, makes up the majority of the world.
type = .NOTHING,
tilemap_pos = {0,0},
color = {0,0,0,255},
@ -37,7 +40,7 @@ nothing_tile := Tile {
resource = .NOTHING
}
grass_tile := Tile {
grass_tile := Tile { // Common fauna, more dense in grasslands
type = .FOLIAGE,
tilemap_pos = {5,0},
color = {50,120,25,255},
@ -45,7 +48,7 @@ grass_tile := Tile {
resource = .NOTHING
}
tree_tile := Tile {
tree_tile := Tile { // Common grassland fauna, dense population in forests
type = .SOLID,
tilemap_pos = {0,1},
color = {10,60,15,255},
@ -53,7 +56,15 @@ tree_tile := Tile {
interaction = .RESOURCE,
}
bricks_tile := Tile {
double_tree_tile := Tile { // Only found in forests, densly packed
type = .SOLID,
tilemap_pos = {3,2},
color = {10,60,15,255},
resource = .TREE,
interaction = .RESOURCE,
}
bricks_tile := Tile { // Unused, for now
type = .SOLID,
tilemap_pos = {10,17},
color = {140,30,10,255},
@ -61,10 +72,50 @@ bricks_tile := Tile {
interaction = .NOTHING,
}
water_tile := Tile {
water_tile := Tile { // Only seen in bodies of water
type = .WATER,
tilemap_pos = {19,1},
color = {5,10,70,255},
resource = .NOTHING,
interaction = .NOTHING,
}
shallow_water_tile := Tile { // Only seen in bodies of water
type = .WATER,
tilemap_pos = {19,1},
color = {5,40,80,255},
resource = .NOTHING,
interaction = .NOTHING,
}
cactus_tile := Tile { // Common desert fauna
type = .SOLID,
tilemap_pos = {6,1},
color = {5,40,0,255},
resource = .NOTHING,
interaction = .NOTHING,
}
double_cactus_tile := Tile { // Sparse desert fauna
type = .SOLID,
tilemap_pos = {7,1},
color = {5,40,0,255},
resource = .NOTHING,
interaction = .NOTHING,
}
cow_skull_tile := Tile { // Rare chance of spawning in a desert
type = .SOLID,
tilemap_pos = {1,15},
color = {200,200,200,255},
resource = .BONE,
interaction = .RESOURCE,
}
dead_bush_tile := Tile { // Common desert fauna
type = .FOLIAGE,
tilemap_pos = {6,2},
color = {145,100,30,255},
interaction = .NOTHING,
resource = .NOTHING
}

View File

@ -13,15 +13,16 @@ WORLD_DATA_PATH :: "data/worlds"
World :: struct {
data_dir: string,
chunks: map[Vec2i]Chunk,
seed: u32
seed: i64
}
Chunk :: struct #packed {
position: Vec2i,
tiles: [CHUNK_SIZE][CHUNK_SIZE]Tile,
biome_id:u32,
}
create_world :: proc(name:string, seed:u32) -> World {
create_world :: proc(name:string, seed:i64) -> World {
data_dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name)
if !os.is_dir(data_dir) {
fmt.printfln("Data dir: %v does not exist", data_dir)
@ -40,7 +41,7 @@ create_world :: proc(name:string, seed:u32) -> World {
}
}
load_world :: proc(name:string, seed:u32) -> World {
load_world :: proc(name:string, seed:i64) -> World {
dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name)
if !os.is_dir(dir) {
panic("Couldnt load world")
@ -89,6 +90,9 @@ save_chunk :: proc(c:^Chunk, w:^World) {
}
}
// Biome ID
for byte in transmute([size_of(u32)]u8)c.biome_id {append(&data, byte)}
err := os.write_entire_file_or_err(filename, data[:])
}
@ -138,6 +142,10 @@ load_chunk :: proc(pos:Vec2i, w:^World) -> Chunk {
}
}
// Load Biome ID
mem.copy(transmute([^]u8)&chunk.biome_id, &data[offset], size_of(u32))
offset += size_of(u32)
return chunk
}
@ -150,42 +158,6 @@ unload_chunk :: proc(pos:Vec2i, w:^World) {
}
}
generate_chunk :: proc(pos:Vec2i, seed:u32) -> Chunk {
chunk := Chunk {position = pos}
for x in 0..<CHUNK_SIZE {
for y in 0..<CHUNK_SIZE {
world_x := pos.x * CHUNK_SIZE + x
world_y := pos.y * CHUNK_SIZE + y
chunk.tiles[x][y] = generate_tile(world_x, world_y, seed)
}
}
return chunk
}
generate_tile :: proc(x, y: int, seed: u32) -> Tile {
base_noise := hash_noise(x, y, seed)
cluster_noise := hash_noise(x / 3, y / 3, seed + 12345) // Larger scale noise for clusters
if base_noise < 0.70 {
return nothing_tile
} else if base_noise < 0.85 {
return grass_tile
} else if base_noise < 0.95 {
if cluster_noise > 0.5 { // Favor trees in cluster regions
return tree_tile
}
return grass_tile
} else {
if cluster_noise > 0.4 { // Only allow ponds in certain areas
return water_tile
}
return nothing_tile
}
}
get_chunk :: proc(w:^World, chunk_pos:Vec2i) -> ^Chunk {
chunk, exists := w.chunks[chunk_pos]