I may have used ai for some of the proc gen..
This commit is contained in:
parent
8c0601c7aa
commit
2be653504a
206
game/debug_terrain_tools.odin
Normal file
206
game/debug_terrain_tools.odin
Normal file
@ -0,0 +1,206 @@
|
||||
package game
|
||||
|
||||
import "core:fmt"
|
||||
import "core:math/noise"
|
||||
|
||||
// Fixed desert finding procedure
|
||||
find_desert :: proc(seed: i64) -> (found: bool, pos: Vec2i) {
|
||||
search_radius := 1000
|
||||
step_size := 20 // Check every 20 blocks to speed up the search
|
||||
|
||||
// Track how many desert tiles we find for debugging
|
||||
desert_count := 0
|
||||
total_checked := 0
|
||||
last_desert_pos := Vec2i{0, 0}
|
||||
|
||||
fmt.println("Searching for deserts with seed:", seed)
|
||||
|
||||
for x := -search_radius; x < search_radius; x += step_size {
|
||||
for y := -search_radius; y < search_radius; y += step_size {
|
||||
pos := Vec2i{x, y}
|
||||
biome := get_biome_type(pos, seed)
|
||||
total_checked += 1
|
||||
|
||||
if biome.type == .DESERT {
|
||||
desert_count += 1
|
||||
last_desert_pos = pos
|
||||
fmt.println("Found desert at:", pos)
|
||||
|
||||
if desert_count <= 5 { // Only report the first few to avoid spam
|
||||
// Verify by checking adjacent tiles to confirm it's not just a single glitched tile
|
||||
desert_size := 0
|
||||
check_radius := 3
|
||||
|
||||
for cx := -check_radius; cx <= check_radius; cx += 1 {
|
||||
for cy := -check_radius; cy <= check_radius; cy += 1 {
|
||||
check_pos := Vec2i{x + cx, y + cy}
|
||||
check_biome := get_biome_type(check_pos, seed)
|
||||
|
||||
if check_biome.type == .DESERT {
|
||||
desert_size += 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fmt.println(" Desert size (in 7x7 area):", desert_size, "out of", (check_radius*2+1)*(check_radius*2+1))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Report desert statistics
|
||||
desert_percentage := f32(desert_count) / f32(total_checked) * 100.0
|
||||
fmt.println("Desert statistics:")
|
||||
fmt.println(" Total positions checked:", total_checked)
|
||||
fmt.println(" Desert tiles found:", desert_count)
|
||||
fmt.println(" Desert percentage:", desert_percentage, "%")
|
||||
|
||||
if desert_count > 0 {
|
||||
return true, last_desert_pos // Return the last desert found
|
||||
} else {
|
||||
fmt.println("No desert found within search radius")
|
||||
return false, Vec2i{0, 0}
|
||||
}
|
||||
}
|
||||
|
||||
// Create a biome distribution map to visualize the actual distribution
|
||||
generate_biome_map :: proc(seed: i64, width: int, height: int) {
|
||||
biome_counts := [BiomeType]int{}
|
||||
total_tiles := width * height
|
||||
|
||||
fmt.println("Generating biome distribution map", width, "x", height)
|
||||
|
||||
// First pass - count biomes
|
||||
for y := 0; y < height; y += 1 {
|
||||
for x := 0; x < width; x += 1 {
|
||||
// Use a different area of the world for better sampling
|
||||
world_x := (x - width/2) * 20
|
||||
world_y := (y - height/2) * 20
|
||||
|
||||
biome := get_biome_type(Vec2i{world_x, world_y}, seed)
|
||||
biome_counts[biome.type] += 1
|
||||
|
||||
// Print a character representing each biome for a ASCII map
|
||||
if y % 5 == 0 && x % 5 == 0 { // Print sparse map to fit in console
|
||||
c := '?'
|
||||
switch biome.type {
|
||||
case .DESERT: c = 'D'
|
||||
case .GRASSLAND: c = 'G'
|
||||
case .FOREST: c = 'F'
|
||||
case .LAKE: c = 'L'
|
||||
}
|
||||
fmt.print(c)
|
||||
}
|
||||
}
|
||||
if y % 5 == 0 {
|
||||
fmt.println()
|
||||
}
|
||||
}
|
||||
|
||||
// Print biome statistics
|
||||
fmt.println("\nBiome Distribution:")
|
||||
fmt.println(" Total area:", total_tiles, "tiles")
|
||||
|
||||
for biome_type, count in biome_counts {
|
||||
percentage := f32(count) / f32(total_tiles) * 100.0
|
||||
fmt.println(" ", biome_type, ":", count, "tiles (", percentage, "%)")
|
||||
}
|
||||
}
|
||||
|
||||
// Debug the noise distribution directly
|
||||
debug_noise_values :: proc(seed: i64) {
|
||||
// Import math package at the top of your file
|
||||
// import "core:math"
|
||||
|
||||
// Collect some sample values to see the actual distribution
|
||||
samples := 1000
|
||||
temp_values := make([dynamic]f64, 0, samples)
|
||||
moisture_values := make([dynamic]f64, 0, samples)
|
||||
|
||||
for i := 0; i < samples; i += 1 {
|
||||
// Sample across a wide area
|
||||
x := (i % 50) * 100 - 2500
|
||||
y := (i / 50) * 100 - 2500
|
||||
|
||||
// Generate values the same way as in get_biome_type
|
||||
continent_scale := 0.001
|
||||
region_scale := 0.005
|
||||
|
||||
moisture_seed := seed + 20000
|
||||
temperature_seed := seed + 30000
|
||||
|
||||
// Get raw noise values
|
||||
moisture := noise.noise_2d(moisture_seed, {f64(x) * region_scale, f64(y) * region_scale})
|
||||
temperature := noise.noise_2d(temperature_seed, {f64(x) * region_scale, f64(y) * region_scale})
|
||||
|
||||
// Apply the same transformations as in your get_biome_type function
|
||||
// Remove this line if you don't have math imported, or replace with your own pow implementation
|
||||
// temperature = math.pow(temperature * 0.5 + 0.5, 0.8) * 2.0 - 1.0
|
||||
|
||||
// Normalize to 0-1 range
|
||||
normalized_moisture := f64(moisture * 0.5 + 0.5)
|
||||
normalized_temperature := f64(temperature * 0.5 + 0.5)
|
||||
|
||||
append_elem(&temp_values, normalized_temperature)
|
||||
append_elem(&moisture_values, normalized_moisture)
|
||||
}
|
||||
|
||||
// Calculate statistics
|
||||
temp_min, temp_max, temp_avg := 1.0, 0.0, 0.0
|
||||
moisture_min, moisture_max, moisture_avg := 1.0, 0.0, 0.0
|
||||
|
||||
for i := 0; i < samples; i += 1 {
|
||||
temp := temp_values[i]
|
||||
moisture := moisture_values[i]
|
||||
|
||||
temp_avg += temp
|
||||
moisture_avg += moisture
|
||||
|
||||
temp_min = min(temp_min, temp)
|
||||
temp_max = max(temp_max, temp)
|
||||
moisture_min = min(moisture_min, moisture)
|
||||
moisture_max = max(moisture_max, moisture)
|
||||
}
|
||||
|
||||
temp_avg /= f64(samples)
|
||||
moisture_avg /= f64(samples)
|
||||
|
||||
// Print statistics
|
||||
fmt.println("Temperature values (normalized to 0-1):")
|
||||
fmt.println(" Min:", temp_min, "Max:", temp_max, "Avg:", temp_avg)
|
||||
fmt.println("Moisture values (normalized to 0-1):")
|
||||
fmt.println(" Min:", moisture_min, "Max:", moisture_max, "Avg:", moisture_avg)
|
||||
|
||||
// Count how many points would qualify as deserts with different thresholds
|
||||
desert_count_strict := 0
|
||||
desert_count_medium := 0
|
||||
desert_count_loose := 0
|
||||
|
||||
for i := 0; i < samples; i += 1 {
|
||||
temp := temp_values[i]
|
||||
moisture := moisture_values[i]
|
||||
|
||||
// Strict: temp > 0.55 && moisture < 0.4
|
||||
if temp > 0.55 && moisture < 0.4 {
|
||||
desert_count_strict += 1
|
||||
}
|
||||
|
||||
// Medium: temp > 0.4 && moisture < 0.6
|
||||
if temp > 0.4 && moisture < 0.6 {
|
||||
desert_count_medium += 1
|
||||
}
|
||||
|
||||
// Loose: temp > 0.3 || moisture < 0.4
|
||||
if temp > 0.3 || moisture < 0.4 {
|
||||
desert_count_loose += 1
|
||||
}
|
||||
}
|
||||
|
||||
fmt.println("\nDesert qualification rates with different thresholds:")
|
||||
fmt.println(" Strict (temp > 0.55 && moisture < 0.4):",
|
||||
f32(desert_count_strict)/f32(samples)*100.0, "%")
|
||||
fmt.println(" Medium (temp > 0.4 && moisture < 0.6):",
|
||||
f32(desert_count_medium)/f32(samples)*100.0, "%")
|
||||
fmt.println(" Loose (temp > 0.3 || moisture < 0.4):",
|
||||
f32(desert_count_loose)/f32(samples)*100.0, "%")
|
||||
}
|
@ -24,9 +24,8 @@ main :: proc() {
|
||||
|
||||
rl.SetTargetFPS(60)
|
||||
|
||||
|
||||
player = {
|
||||
position = {CELL_SIZE * 10000, CELL_SIZE * 10000},
|
||||
position = {CELL_SIZE * 10, CELL_SIZE * 10},
|
||||
camera = {
|
||||
zoom = 4,
|
||||
target = {player.position.x + (CELL_SIZE / 2), player.position.y + (CELL_SIZE / 2)},
|
||||
@ -38,13 +37,9 @@ main :: proc() {
|
||||
load_tilemap()
|
||||
defer unload_tilemap()
|
||||
|
||||
world = create_world("test_world", 5761)
|
||||
|
||||
set_tile(&world, tree_tile, {400,400})
|
||||
|
||||
world = create_world("test_world", 23462547245)
|
||||
save_world(&world)
|
||||
|
||||
|
||||
game_loop()
|
||||
}
|
||||
|
||||
@ -58,7 +53,7 @@ game_loop :: proc() {
|
||||
update()
|
||||
|
||||
rl.BeginDrawing()
|
||||
rl.ClearBackground({10,80,10,255})
|
||||
rl.ClearBackground(rl.BLACK)
|
||||
rl.BeginMode2D(player.camera)
|
||||
|
||||
draw()
|
||||
@ -69,11 +64,10 @@ game_loop :: proc() {
|
||||
|
||||
player_grid_pos := get_player_grid_position(&player)
|
||||
player_grid_pos_tile := get_world_tile(&world, vec2_to_vec2i(player_grid_pos))
|
||||
status_string := rl.TextFormat("POS: [%i,%i] : %v | MODE: %v", int(player_grid_pos.x), int(player_grid_pos.y), player_grid_pos_tile.type, player.mode)
|
||||
|
||||
current_chunk := get_chunk_from_world_pos(&world, player_grid_pos)
|
||||
status_string := rl.TextFormat("POS: [%i,%i] : %v | Chunk: %v : %v | MODE: %v", int(player_grid_pos.x), int(player_grid_pos.y), player_grid_pos_tile.type, current_chunk.position, get_biome_from_id(current_chunk.biome_id).name, player.mode)
|
||||
rl.DrawText(status_string, 5, 25, 20, rl.RED)
|
||||
|
||||
|
||||
rl.EndDrawing()
|
||||
}
|
||||
|
||||
|
@ -15,9 +15,9 @@ vec2_to_vec2i :: proc(v2:[2]f32) -> Vec2i {
|
||||
return {int(v2.x), int(v2.y)}
|
||||
}
|
||||
|
||||
hash_noise :: proc(x, y: int, seed: u32) -> f32 {
|
||||
h: u32 = u32(x) * 374761393
|
||||
h *= u32(y) * 668265263
|
||||
hash_noise :: proc(x, y: int, seed: i64) -> f32 {
|
||||
h: i64 = i64(x) * 374761393
|
||||
h *= i64(y) * 668265263
|
||||
h *= seed
|
||||
h *= 3266489917
|
||||
h >>= 16
|
||||
|
@ -32,7 +32,9 @@ player_update :: proc(p : ^Player, w: ^World) {
|
||||
handle_player_camera(p)
|
||||
|
||||
if rl.IsKeyPressed(.SPACE) {
|
||||
set_tile(w, bricks_tile, vec2_to_vec2i(get_player_grid_position(p)))
|
||||
// set_tile(w, bricks_tile, vec2_to_vec2i(get_player_grid_position(p)))
|
||||
find_desert(w.seed)
|
||||
generate_biome_map(w.seed, 100, 100)
|
||||
}
|
||||
}
|
||||
|
||||
@ -91,7 +93,7 @@ handle_player_input :: proc(p:^Player, w:^World) {
|
||||
// Movement
|
||||
target_pos := get_player_grid_position(p)
|
||||
dt := rl.GetFrameTime()
|
||||
move_delay : f32 = 0.2
|
||||
move_delay : f32 = 0.0
|
||||
if p.move_timer > 0 {
|
||||
p.move_timer -= dt
|
||||
}
|
||||
@ -199,7 +201,7 @@ get_player_grid_position :: proc(player:^Player) -> rl.Vector2 {
|
||||
}
|
||||
|
||||
draw_player :: proc(player:^Player) {
|
||||
draw_tile({25,0}, player.position, {50,0,80,255})
|
||||
draw_tile({25,0}, player.position, {30,100,120,255})
|
||||
}
|
||||
|
||||
|
||||
@ -213,7 +215,7 @@ will_collide :: proc(w:^World, pos:rl.Vector2) -> bool {
|
||||
|
||||
#partial switch tile.type {
|
||||
case .SOLID:
|
||||
return true
|
||||
return false
|
||||
}
|
||||
|
||||
return false
|
||||
|
14
game/structures.odin
Normal file
14
game/structures.odin
Normal file
@ -0,0 +1,14 @@
|
||||
package game
|
||||
|
||||
Structure :: struct {
|
||||
name:string,
|
||||
tile_map:[dynamic][dynamic]Tile,
|
||||
// Other data here later like NPCs and enemies?
|
||||
}
|
||||
|
||||
test_structure := Structure {
|
||||
name = "Test",
|
||||
tile_map = {
|
||||
// Make a structure here?????
|
||||
}
|
||||
}
|
298
game/terrain.odin
Normal file
298
game/terrain.odin
Normal file
@ -0,0 +1,298 @@
|
||||
package game
|
||||
|
||||
import "core:math/noise"
|
||||
import "core:math"
|
||||
import "core:fmt"
|
||||
|
||||
BIOME_SCALE : f64 : 1
|
||||
|
||||
biome_list := map[u32]Biome {
|
||||
0 = grasslands_biome,
|
||||
1 = forest_biome,
|
||||
2 = desert_biome,
|
||||
3 = lake_biome,
|
||||
}
|
||||
|
||||
BiomeType :: enum {
|
||||
GRASSLAND,
|
||||
FOREST,
|
||||
LAKE,
|
||||
DESERT,
|
||||
}
|
||||
|
||||
Biome :: struct {
|
||||
id:u32,
|
||||
name: string,
|
||||
type: BiomeType,
|
||||
fauna_color: [4]u8,
|
||||
valid_structures: [dynamic]u32
|
||||
}
|
||||
|
||||
// Define biome constants
|
||||
grasslands_biome := Biome {
|
||||
id = 0,
|
||||
name = "Grasslands",
|
||||
type = .GRASSLAND,
|
||||
fauna_color = {50, 120, 25, 255},
|
||||
valid_structures = {}
|
||||
}
|
||||
|
||||
forest_biome := Biome {
|
||||
id = 1,
|
||||
name = "Forest",
|
||||
type = .FOREST,
|
||||
fauna_color = {30, 80, 20, 255},
|
||||
valid_structures = {}
|
||||
}
|
||||
|
||||
desert_biome := Biome {
|
||||
id = 2,
|
||||
name = "Desert",
|
||||
type = .DESERT,
|
||||
fauna_color = {200, 180, 100, 255},
|
||||
valid_structures = {}
|
||||
}
|
||||
|
||||
lake_biome := Biome {
|
||||
id = 3,
|
||||
name = "Lake",
|
||||
type = .LAKE,
|
||||
fauna_color = {0, 50, 150, 255},
|
||||
valid_structures = {}
|
||||
}
|
||||
|
||||
get_biome_from_id :: proc(id:u32) -> Biome {
|
||||
return biome_list[id]
|
||||
}
|
||||
|
||||
// // Improved biome selection with multiple noise layers and better scaling
|
||||
// get_biome_type :: proc(world_pos: Vec2i, seed: i64) -> Biome {
|
||||
// // Use multiple noise scales for different features
|
||||
// continent_scale := 0.001 // Very large scale features (continents)
|
||||
// region_scale := 0.005 // Medium scale features (regions)
|
||||
// local_scale := 0.02 // Local variations
|
||||
//
|
||||
// // Use different seed offsets for each noise layer
|
||||
// continent_seed := seed
|
||||
// region_seed := seed + 10000
|
||||
// moisture_seed := seed + 20000
|
||||
// temperature_seed := seed + 30000
|
||||
//
|
||||
// // Generate base continent shapes
|
||||
// continent := noise.noise_2d(continent_seed, {f64(world_pos.x) * continent_scale, f64(world_pos.y) * continent_scale})
|
||||
// // Amplify to get more defined continents
|
||||
// continent = math.pow(continent * 0.5 + 0.5, 1.5) * 2.0 - 1.0
|
||||
//
|
||||
// // Generate regional variations
|
||||
// region := noise.noise_2d(region_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
|
||||
//
|
||||
// // Generate moisture and temperature maps for biome determination
|
||||
// moisture := noise.noise_2d(moisture_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
|
||||
// temperature := noise.noise_2d(temperature_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
|
||||
//
|
||||
// // Local variations (small details)
|
||||
// local_var := noise.noise_2d(seed, {f64(world_pos.x) * local_scale, f64(world_pos.y) * local_scale}) * 0.1
|
||||
//
|
||||
// // Combine all factors with proper weighting
|
||||
// elevation := continent * 0.7 + region * 0.3 + local_var
|
||||
//
|
||||
// // Use temperature and moisture to determine biome type instead of just elevation
|
||||
// // This creates more natural and varied biome transitions
|
||||
//
|
||||
// // Convert noise values to 0-1 range for easier thresholding
|
||||
// normalized_elevation := elevation * 0.5 + 0.5
|
||||
// normalized_moisture := moisture * 0.5 + 0.5
|
||||
// normalized_temperature := temperature * 0.5 + 0.5
|
||||
//
|
||||
// // Lakes appear in low elevation areas
|
||||
// if normalized_elevation < 0.3 {
|
||||
// return lake_biome
|
||||
// }
|
||||
//
|
||||
// // Deserts appear in hot, dry areas
|
||||
// if normalized_temperature > 0.6 && normalized_moisture < 0.3 {
|
||||
// return desert_biome
|
||||
// }
|
||||
//
|
||||
// // Forests need moderate to high moisture
|
||||
// if normalized_moisture > 0.5 {
|
||||
// return forest_biome
|
||||
// }
|
||||
//
|
||||
// // Default to grasslands
|
||||
// return grasslands_biome
|
||||
// }
|
||||
|
||||
get_biome_type :: proc(world_pos: Vec2i, seed: i64) -> Biome {
|
||||
// Use multiple noise scales for different features
|
||||
continent_scale := 0.001 // Very large scale features (continents)
|
||||
region_scale := 0.005 // Medium scale features (regions)
|
||||
local_scale := 0.02 // Local variations
|
||||
|
||||
// Use different seed offsets for each noise layer
|
||||
continent_seed := seed
|
||||
region_seed := seed + 10000
|
||||
moisture_seed := seed + 20000
|
||||
temperature_seed := seed + 30000
|
||||
|
||||
// Generate base continent shapes
|
||||
continent := noise.noise_2d(continent_seed, {f64(world_pos.x) * continent_scale, f64(world_pos.y) * continent_scale})
|
||||
// Amplify to get more defined continents
|
||||
continent = math.pow(continent * 0.5 + 0.5, 1.5) * 2.0 - 1.0
|
||||
|
||||
// Generate regional variations
|
||||
region := noise.noise_2d(region_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
|
||||
|
||||
// Generate moisture and temperature maps for biome determination
|
||||
moisture := noise.noise_2d(moisture_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
|
||||
temperature := noise.noise_2d(temperature_seed, {f64(world_pos.x) * region_scale, f64(world_pos.y) * region_scale})
|
||||
|
||||
// Adjust temperature to create larger hot regions
|
||||
// This skews the distribution to have more areas with higher temperature
|
||||
temperature = math.pow(temperature * 0.5 + 0.5, 0.8) * 2.0 - 1.0
|
||||
|
||||
// Local variations (small details)
|
||||
local_var := noise.noise_2d(seed, {f64(world_pos.x) * local_scale, f64(world_pos.y) * local_scale}) * 0.1
|
||||
|
||||
// Combine all factors with proper weighting
|
||||
elevation := continent * 0.7 + region * 0.3 + local_var
|
||||
|
||||
// Convert noise values to 0-1 range for easier thresholding
|
||||
normalized_elevation := elevation * 0.5 + 0.5
|
||||
normalized_moisture := moisture * 0.5 + 0.5
|
||||
normalized_temperature := temperature * 0.5 + 0.5
|
||||
|
||||
// DEBUG: Uncomment to log values when testing
|
||||
// fmt.println("pos:", world_pos, "temp:", normalized_temperature, "moisture:", normalized_moisture)
|
||||
|
||||
// Lakes appear in low elevation areas
|
||||
if normalized_elevation < 0.3 {
|
||||
return lake_biome
|
||||
}
|
||||
|
||||
// ADJUSTED: More generous desert conditions
|
||||
// Deserts appear in hot OR dry areas (not requiring both)
|
||||
// This makes deserts more common and creates larger desert regions
|
||||
if normalized_temperature > 0.55 && normalized_moisture < 0.4 {
|
||||
return desert_biome
|
||||
}
|
||||
|
||||
// You could also try this alternative approach that uses temperature-moisture balance:
|
||||
// desert_score := normalized_temperature - normalized_moisture
|
||||
// if desert_score > 0.3 {
|
||||
// return desert_biome
|
||||
// }
|
||||
|
||||
// Forests need moderate to high moisture
|
||||
if normalized_moisture > 0.5 {
|
||||
return forest_biome
|
||||
}
|
||||
|
||||
// Default to grasslands
|
||||
return grasslands_biome
|
||||
}
|
||||
|
||||
// Improved chunk generation that considers neighboring chunks
|
||||
generate_chunk :: proc(pos: Vec2i, seed: i64) -> Chunk {
|
||||
chunk := Chunk{position = pos}
|
||||
|
||||
// Store the biome for this chunk for consistency
|
||||
chunk_center := Vec2i{pos.x * CHUNK_SIZE + CHUNK_SIZE/2, pos.y * CHUNK_SIZE + CHUNK_SIZE/2}
|
||||
biome := get_biome_type(chunk_center, seed)
|
||||
chunk.biome_id = biome.id
|
||||
|
||||
// Generate each tile, allowing for biome blending at edges
|
||||
for x in 0..<CHUNK_SIZE {
|
||||
for y in 0..<CHUNK_SIZE {
|
||||
world_x := pos.x * CHUNK_SIZE + x
|
||||
world_y := pos.y * CHUNK_SIZE + y
|
||||
world_pos := Vec2i{world_x, world_y}
|
||||
|
||||
// Check the tile's specific biome (for transitions)
|
||||
tile_biome := get_biome_type(world_pos, seed)
|
||||
|
||||
// Calculate distances to chunk edges for potential blending
|
||||
edge_dist_x := min(x, CHUNK_SIZE - 1 - x)
|
||||
edge_dist_y := min(y, CHUNK_SIZE - 1 - y)
|
||||
edge_dist := min(edge_dist_x, edge_dist_y)
|
||||
|
||||
// Blend between chunk biome and tile biome near edges
|
||||
// for smoother transitions between chunks
|
||||
biome_to_use := biome
|
||||
if edge_dist < 4 { // Within 4 tiles of chunk edge
|
||||
blend_factor := f32(edge_dist) / 4.0
|
||||
|
||||
// Simple way to blend biomes - just pick one based on blend factor
|
||||
// For a more sophisticated approach, you could actually blend features
|
||||
if hash_noise(world_x, world_y, seed) > blend_factor {
|
||||
biome_to_use = tile_biome
|
||||
}
|
||||
}
|
||||
|
||||
chunk.tiles[x][y] = generate_tile(world_pos, seed, biome_to_use)
|
||||
}
|
||||
}
|
||||
|
||||
return chunk
|
||||
}
|
||||
|
||||
// Improved tile generation with biome transition support
|
||||
generate_tile :: proc(pos: Vec2i, seed: i64, biome: Biome) -> Tile {
|
||||
hash_value := hash_noise(pos.x, pos.y, seed)
|
||||
|
||||
// Use multiple noise scales for natural-looking features
|
||||
large_scale := 0.02
|
||||
medium_scale := 0.05
|
||||
small_scale := 0.15
|
||||
|
||||
large_noise := noise.noise_2d(seed, {f64(pos.x) * large_scale, f64(pos.y) * large_scale})
|
||||
medium_noise := noise.noise_2d(seed + 5000, {f64(pos.x) * medium_scale, f64(pos.y) * medium_scale})
|
||||
small_noise := noise.noise_2d(seed + 10000, {f64(pos.x) * small_scale, f64(pos.y) * small_scale})
|
||||
|
||||
// Combine noise at different scales
|
||||
combined_noise := large_noise * 0.6 + medium_noise * 0.3 + small_noise * 0.1
|
||||
|
||||
// Different biomes use the noise differently
|
||||
switch biome.type {
|
||||
case .GRASSLAND:
|
||||
if combined_noise > 0.7 {
|
||||
return tree_tile
|
||||
} else if combined_noise > 0.5 {
|
||||
return grass_tile
|
||||
} else {
|
||||
return nothing_tile
|
||||
}
|
||||
case .FOREST:
|
||||
if combined_noise > 0.8 {
|
||||
return double_tree_tile
|
||||
} else if combined_noise > 0.4 {
|
||||
return tree_tile
|
||||
} else if combined_noise > 0.0 {
|
||||
return grass_tile
|
||||
} else {
|
||||
return nothing_tile
|
||||
}
|
||||
case .DESERT:
|
||||
|
||||
cactus_noise := medium_noise * 0.5 + 0.5 // Normalize to 0-1
|
||||
|
||||
if cactus_noise > 0.7 && hash_value > 0.6 {
|
||||
return cactus_tile
|
||||
} else if combined_noise > 0.85 {
|
||||
return dead_bush_tile
|
||||
} else {
|
||||
return nothing_tile
|
||||
}
|
||||
case .LAKE:
|
||||
// Lakes can have different depths
|
||||
if combined_noise > 0.7 {
|
||||
return shallow_water_tile // You'd need to define this
|
||||
} else {
|
||||
return water_tile
|
||||
}
|
||||
case:
|
||||
return nothing_tile
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,7 @@ TileType :: enum u8 {
|
||||
ResourceType :: enum u8 {
|
||||
NOTHING,
|
||||
TREE,
|
||||
BONE,
|
||||
}
|
||||
|
||||
InteractionType :: enum u8 {
|
||||
@ -29,7 +30,9 @@ InteractionType :: enum u8 {
|
||||
ENEMY,
|
||||
}
|
||||
|
||||
nothing_tile := Tile {
|
||||
|
||||
// Premade Tiles
|
||||
nothing_tile := Tile { // The most common tile, makes up the majority of the world.
|
||||
type = .NOTHING,
|
||||
tilemap_pos = {0,0},
|
||||
color = {0,0,0,255},
|
||||
@ -37,7 +40,7 @@ nothing_tile := Tile {
|
||||
resource = .NOTHING
|
||||
}
|
||||
|
||||
grass_tile := Tile {
|
||||
grass_tile := Tile { // Common fauna, more dense in grasslands
|
||||
type = .FOLIAGE,
|
||||
tilemap_pos = {5,0},
|
||||
color = {50,120,25,255},
|
||||
@ -45,7 +48,7 @@ grass_tile := Tile {
|
||||
resource = .NOTHING
|
||||
}
|
||||
|
||||
tree_tile := Tile {
|
||||
tree_tile := Tile { // Common grassland fauna, dense population in forests
|
||||
type = .SOLID,
|
||||
tilemap_pos = {0,1},
|
||||
color = {10,60,15,255},
|
||||
@ -53,7 +56,15 @@ tree_tile := Tile {
|
||||
interaction = .RESOURCE,
|
||||
}
|
||||
|
||||
bricks_tile := Tile {
|
||||
double_tree_tile := Tile { // Only found in forests, densly packed
|
||||
type = .SOLID,
|
||||
tilemap_pos = {3,2},
|
||||
color = {10,60,15,255},
|
||||
resource = .TREE,
|
||||
interaction = .RESOURCE,
|
||||
}
|
||||
|
||||
bricks_tile := Tile { // Unused, for now
|
||||
type = .SOLID,
|
||||
tilemap_pos = {10,17},
|
||||
color = {140,30,10,255},
|
||||
@ -61,10 +72,50 @@ bricks_tile := Tile {
|
||||
interaction = .NOTHING,
|
||||
}
|
||||
|
||||
water_tile := Tile {
|
||||
water_tile := Tile { // Only seen in bodies of water
|
||||
type = .WATER,
|
||||
tilemap_pos = {19,1},
|
||||
color = {5,10,70,255},
|
||||
resource = .NOTHING,
|
||||
interaction = .NOTHING,
|
||||
}
|
||||
|
||||
shallow_water_tile := Tile { // Only seen in bodies of water
|
||||
type = .WATER,
|
||||
tilemap_pos = {19,1},
|
||||
color = {5,40,80,255},
|
||||
resource = .NOTHING,
|
||||
interaction = .NOTHING,
|
||||
}
|
||||
|
||||
cactus_tile := Tile { // Common desert fauna
|
||||
type = .SOLID,
|
||||
tilemap_pos = {6,1},
|
||||
color = {5,40,0,255},
|
||||
resource = .NOTHING,
|
||||
interaction = .NOTHING,
|
||||
}
|
||||
|
||||
double_cactus_tile := Tile { // Sparse desert fauna
|
||||
type = .SOLID,
|
||||
tilemap_pos = {7,1},
|
||||
color = {5,40,0,255},
|
||||
resource = .NOTHING,
|
||||
interaction = .NOTHING,
|
||||
}
|
||||
|
||||
cow_skull_tile := Tile { // Rare chance of spawning in a desert
|
||||
type = .SOLID,
|
||||
tilemap_pos = {1,15},
|
||||
color = {200,200,200,255},
|
||||
resource = .BONE,
|
||||
interaction = .RESOURCE,
|
||||
}
|
||||
|
||||
dead_bush_tile := Tile { // Common desert fauna
|
||||
type = .FOLIAGE,
|
||||
tilemap_pos = {6,2},
|
||||
color = {145,100,30,255},
|
||||
interaction = .NOTHING,
|
||||
resource = .NOTHING
|
||||
}
|
||||
|
@ -13,15 +13,16 @@ WORLD_DATA_PATH :: "data/worlds"
|
||||
World :: struct {
|
||||
data_dir: string,
|
||||
chunks: map[Vec2i]Chunk,
|
||||
seed: u32
|
||||
seed: i64
|
||||
}
|
||||
|
||||
Chunk :: struct #packed {
|
||||
position: Vec2i,
|
||||
tiles: [CHUNK_SIZE][CHUNK_SIZE]Tile,
|
||||
biome_id:u32,
|
||||
}
|
||||
|
||||
create_world :: proc(name:string, seed:u32) -> World {
|
||||
create_world :: proc(name:string, seed:i64) -> World {
|
||||
data_dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name)
|
||||
if !os.is_dir(data_dir) {
|
||||
fmt.printfln("Data dir: %v does not exist", data_dir)
|
||||
@ -40,7 +41,7 @@ create_world :: proc(name:string, seed:u32) -> World {
|
||||
}
|
||||
}
|
||||
|
||||
load_world :: proc(name:string, seed:u32) -> World {
|
||||
load_world :: proc(name:string, seed:i64) -> World {
|
||||
dir := fmt.tprintf("%v/%v", WORLD_DATA_PATH, name)
|
||||
if !os.is_dir(dir) {
|
||||
panic("Couldnt load world")
|
||||
@ -89,6 +90,9 @@ save_chunk :: proc(c:^Chunk, w:^World) {
|
||||
}
|
||||
}
|
||||
|
||||
// Biome ID
|
||||
for byte in transmute([size_of(u32)]u8)c.biome_id {append(&data, byte)}
|
||||
|
||||
err := os.write_entire_file_or_err(filename, data[:])
|
||||
|
||||
}
|
||||
@ -138,6 +142,10 @@ load_chunk :: proc(pos:Vec2i, w:^World) -> Chunk {
|
||||
}
|
||||
}
|
||||
|
||||
// Load Biome ID
|
||||
mem.copy(transmute([^]u8)&chunk.biome_id, &data[offset], size_of(u32))
|
||||
offset += size_of(u32)
|
||||
|
||||
return chunk
|
||||
|
||||
}
|
||||
@ -150,42 +158,6 @@ unload_chunk :: proc(pos:Vec2i, w:^World) {
|
||||
}
|
||||
}
|
||||
|
||||
generate_chunk :: proc(pos:Vec2i, seed:u32) -> Chunk {
|
||||
chunk := Chunk {position = pos}
|
||||
|
||||
for x in 0..<CHUNK_SIZE {
|
||||
for y in 0..<CHUNK_SIZE {
|
||||
world_x := pos.x * CHUNK_SIZE + x
|
||||
world_y := pos.y * CHUNK_SIZE + y
|
||||
|
||||
chunk.tiles[x][y] = generate_tile(world_x, world_y, seed)
|
||||
}
|
||||
}
|
||||
|
||||
return chunk
|
||||
}
|
||||
|
||||
generate_tile :: proc(x, y: int, seed: u32) -> Tile {
|
||||
base_noise := hash_noise(x, y, seed)
|
||||
cluster_noise := hash_noise(x / 3, y / 3, seed + 12345) // Larger scale noise for clusters
|
||||
|
||||
if base_noise < 0.70 {
|
||||
return nothing_tile
|
||||
} else if base_noise < 0.85 {
|
||||
return grass_tile
|
||||
} else if base_noise < 0.95 {
|
||||
if cluster_noise > 0.5 { // Favor trees in cluster regions
|
||||
return tree_tile
|
||||
}
|
||||
return grass_tile
|
||||
} else {
|
||||
if cluster_noise > 0.4 { // Only allow ponds in certain areas
|
||||
return water_tile
|
||||
}
|
||||
return nothing_tile
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
get_chunk :: proc(w:^World, chunk_pos:Vec2i) -> ^Chunk {
|
||||
chunk, exists := w.chunks[chunk_pos]
|
||||
|
Loading…
Reference in New Issue
Block a user